2,479 research outputs found

    Synthetic beta-solenoid proteins with the fragment-free computational design of a beta-hairpin extension

    Get PDF
    The ability to design and construct structures with atomic level precision is one of the key goals of nanotechnology. Proteins offer an attractive target for atomic design, as they can be synthesized chemically or biologically, and can self-assemble. However the generalized protein folding and design problem is unsolved. One approach to simplifying the problem is to use a repetitive protein as a scaffold. Repeat proteins are intrinsically modular, and their folding and structures are better understood than large globular domains. Here, we have developed a new class of synthetic repeat protein, based on the pentapeptide repeat family of beta-solenoid proteins. We have constructed length variants of the basic scaffold, and computationally designed de novo loops projecting from the scaffold core. The experimentally solved 3.56 ˚A resolution crystal structure of one designed loop matches closely the designed hairpin structure, showing the computational design of a backbone extension onto a synthetic protein core without the use of backbone fragments from known structures. Two other loop designs were not clearly resolved in the crystal structures and one loop appeared to be in an incorrect conformation. We have also shown that the repeat unit can accommodate whole domain insertions by inserting a domain into one of the designed loops

    Digital Transformation Business Landscape

    Get PDF
    Chapter 3 is based on an approach to the background and basic understanding of digital transformation; its benefits, the two perspectives of digital transformation, the four dimensions of digital transformation strategies and the procedural aspects of digital transformation strategies are discussed. Following that, there is an explanation on how to integrate digital transformation into firms and some challenges and strategic paths in order to do this effectively.2019-2

    Defining the molecular role of gp91phox in the immune manifestation of acute allergic asthma using a preclinical murine model

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>The phenomena manifested during inflammation require interplay between circulating effector cells, local resident cells, soluble mediators and genetic host factors to establish, develop and maintain itself. Of the molecues involed in the initiation and perpetuation of acute allergic inflammation in asthma, the involvement of effector cells in redox reactions for producing O<sub>2</sub><sup>- </sup>(superoxide anion) through the mediation of NADPH oxidase is a critical step. Prior data suggest that reactive oxygen species (ROS) produced by NADPH oxidase homologues in non-phagocytic cells play an important role in the regulation of signal transduction, while macrophages use a membrane-associated NADPH oxidase to generate an array of oxidizing intermediates which inactivate MMPs on or near them.</p> <p>Materials and Methods and Treatment</p> <p>To clarify the role of gp91phox subunit of NADPH oxidase in the development and progression of an acute allergic asthma phenotype, we induced allergen dependent inflammation in a gp91<it><sup>phox</sup></it>-/- single knockout and a gp91phox-/-MMP-12-/- double knockout mouse models.</p> <p>Results</p> <p>In the knockout mice, both inflammation and airway hyperreactivity were more extensive than in wildtype mice post-OVA. Although OVA-specific IgE in plasma were comparable in wildtype and knockout mice, enhanced inflammatory cell recruitment from circulation and cytokine release in lung and BALf, accompanied by higher airway resistance as well as Penh in response to methacholine, indicate a regulatory role for NADPH oxidase in development of allergic asthma. While T cell mediated functions like Th2 cytokine secretion, and proliferation to OVA were upregulated synchronous with the overall robustness of the asthma phenotype, macrophage upregulation in functions such as proliferation, and mixed lymphocyte reaction indicate a regulatory role for gp91phox and an overall non-involvement or synergistic involvement of MMP12 in the response pathway (comparing data from gp91phox-/- and gp91phox-/-MMP-12-/- mice).</p

    Genetic prediction of complex traits: integrating infinitesimal and marked genetic effects

    Get PDF
    Genetic prediction for complex traits is usually based on models including individual (infinitesimal) or marker effects. Here, we concentrate on models including both the individual and the marker effects. In particular, we develop a ''Mendelian segregation'' model combining infinitesimal effects for base individuals and realized Mendelian sampling in descendants described by the available DNA data. The model is illustrated with an example and the analyses of a public simulated data file. Further, the potential contribution of such models is assessed by simulation. Accuracy, measured as the correlation between true (simulated) and predicted genetic values, was similar for all models compared under different genetic backgrounds. As expected, the segregation model is worthwhile when markers capture a low fraction of total genetic variance. (Résumé d'auteur

    Using lake sediments to assess the long-term impacts of anthropogenic activity in tropical river deltas

    Get PDF
    Tropical river deltas, and the social-ecological systems they sustain, are changing rapidly due to anthropogenic activity and climatic change. Baseline data to inform sustainable management options for resilient deltas is urgently needed and palaeolimnology (reconstructing past conditions from lake or wetland deposits) can provide crucial long-term perspectives needed to identify drivers and rates of change. We review how palaeolimnology can be a valuable tool for resource managers using three current issues facing tropical delta regions: hydrology and sediment supply, salinisation and nutrient pollution. The unique ability of palaeolimnological methods to untangle multiple stressors is also discussed. We demonstrate how palaeolimnology has been used to understand each of these issues, in other aquatic environments, to be incorporated into policy. Palaeolimnology is a key tool to understanding how anthropogenic influences interact with other environmental stressors, providing policymakers and resource managers with a ‘big picture’ view and possible holistic solutions that can be implemented

    Ethanol reversal of tolerance to the respiratory depressant effects of morphine

    Get PDF
    Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO(2) in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Topical application of ALA and ALA hexyl ester on a subcutaneous murine mammary adenocarcinoma: tissue distribution

    Get PDF
    Although 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) has proven to be clinically beneficial for the treatment of certain cancers, including a variety of skin cancers, optimal tissue localisation still remains a problem. An approach to improve the bioavailability of protoporphyrin IX (PpIX) is the use of ALA derivatives instead of ALA. In this work, we employed a subcutaneous murine mammary adenocarcinoma to study the tissue distribution pattern of the ALA hexyl ester (He-ALA) in comparison with ALA after their topical application in different vehicles. He-ALA induced porphyrin synthesis in the skin overlying the tumour (SOT), but it did not reach the tumour tissue as efficiently. Only 5 h after He-ALA lotion application, tumour porphyrin levels surpassed control values. He-ALA delivered in cream induced a substantially lower porphyrin synthesis in SOT, reinforcing the importance of the vehicle in the use of topical PDT. Porphyrin levels in internal organs remained almost within control values when He-ALA was employed. The addition of DMSO to ALA formulation slightly increased tumour and SOT porphyrin biosynthesis, but it did not when added to He-ALA lotion
    corecore